ĐỀ THI Toán học
Ôn tập trắc nghiệm Cấp số nhân Toán Lớp 11 Phần 2
ho dãy số \(\frac{-1}{\sqrt{2}} ; \sqrt{b} ; \sqrt{2}\) . Chọn b để dãy số đã cho lập thành cấp số nhân?
Cho cấp số nhân \(\left(u_{n}\right) \text { với } u_{1}=3 ; q=\frac{-1}{2}\) . Số 222 là số hạng thứ mấy của \(\left(u_{n}\right) ?\) ?
Cho cấp số nhân \(\left(u_{n}\right) \text { với } u_{1}=3 ; \mathrm{q}=-2\). Số 192 là số hạng thứ mấy của \(\left(u_{n}\right) ?\)
Cho cấp số nhân \(\left(u_{n}\right) \text { với } u_{1}=-1 ; q=\frac{-1}{10} \cdot \text { Số } \frac{1}{10^{103}}\) là số hạng thứ mấy của \(\left(u_{n}\right)\)?
Cho cấp số nhân \(\left(u_{n}\right) \text { với } u_{1}=-1 ; \mathrm{q}=0,00001\). Tìm q và \(u_{n}\)?
Cho cấp số nhân \(\left(u_{n}\right) \text { với } u_{1}=4 ; q=-4\). Viết 3 số hạng tiếp theo và số hạng tổng quát \(u_n\)?
Cho cấp số nhân \(\left(u_{n}\right) \text { với } u_{1}=-2 ; \mathrm{q}=-5\). Viết 3 số hạng tiếp theo và số hạng tổng quát un ?
Cho cấp số nhân \(\left(u_{n}\right) \text { với } u_{1}=-\frac{1}{2} ; \mathrm{u}_{7}=-32\) . Tìm q ?
Cho dãy số :\(-1 ; \frac{1}{3} ;-\frac{1}{9} ; \frac{1}{27} ;-\frac{1}{81}\) . Khẳng định nào sau đây là sai?
Một cấp số nhân có số hạng đầu \({u_1} = 3\), công bội q = 2. Biết \({S_n} = 765\). Tìm n?
Tổng \(S = \frac{1}{3} + \frac{1}{{{3^2}}} + \cdot \cdot \cdot + \frac{1}{{{3^n}}} + \cdot \cdot \cdot \) có giá trị là:
Cho cấp số nhân (un) có số hạng đầu u1 = 5 và công bội q = -2. Số hạng thứ sáu của (un) là:
Cho cấp số nhân (un) có \({S_2} = 4;\,{S_3} = 13\). Biết u2 < 0, giá trị S5 bằng
Với mọi \(n \in N^*\), dãy số (un) nào sau đây không phải là cấp số cộng hay cấp số nhân?
Xác định số hạng đầu và công bội của cấp số nhân (un) có \({u_4} - {u_2} = 54\) và \({u_5} - {u_3} = 108\).
Trong các dãy số sau, dãy nào là cấp số nhân?
Cho cấp số nhân \(\left( {{u_n}} \right);{u_1} = 1,q = 2\). Hỏi số 1024 là số hạng thứ mấy?
Cho một cấp số cộng (un) có u1 = 1 và tổng 100 số hạng đầu bằng 24850. Tính \(S = \frac{1}{{u_1^{}{u_2}}} + \frac{1}{{{u_2}{u_3}}} + ... + \frac{1}{{{u_{49}}{u_{50}}}}\)
Một loại vi khuẩn sau mỗi phút số lượng tăng gấp đôi biết rằng sau 5 phút người ta đếm được có 64000 con hỏi sau bao nhiêu phút thì có được 2048000 con.
Cho cấp số nhân (un) thỏa mãn: \(\left\{ \begin{array}{l} {u_1} + {u_2} + {u_3} = 13\\ {u_4} - {u_1} = 26 \end{array} \right.\). Tổng 8 số hạng đầu của cấp số nhân (un) là
Tính tổng tất cả các số hạng của một cấp số nhân có số hạng đầu là \(\frac{1}{2}\), số hạng thứ tư là 32 và số hạng cuối là 2048?
Cho cấp số nhân (un) có u1 = -1 công bội \(q = - \frac{1}{{10}}.\) Hỏi \(\frac{1}{{{{10}^{2017}}}}\) là số hạng thứ mấy của (un) ?
Cho cấp số nhân (un), biết \({u_1} = 1;{u_4} = 64\). Tính công bội q của cấp số nhân.
Cấp số nhân (un) có \(\left\{ \begin{array}{l} {u_{20}} = 8{u_{17}}\\ {u_1} + {u_5} = 272 \end{array} \right..\) Tìm u1, biết rằng \({u_1} \le 100\).
Xác định x dương để 2x - 3; x; x + 3 lập thành cấp số nhân.
Viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Tổng các số hạng của cấp số nhân đó là
Cho 3 số a, b, c theo thứ tự đó tạo thành cấp số nhân với công bội khác 1. Biết cũng theo thứ tự đó chúng lần lượt là số hạng thứ nhất, thứ tư và thứ tám của một cấp số cộng với công sai là s khác 0. Tính \(\frac a s\).
Cho một cấp số nhân có các số hạng đều không âm thỏa mãn u2 = 6, u4 = 24. Tính tổng của 12 số hạng đầu tiên của cấp số nhân đó.
Cho cấp số nhân \({u_1} = - 1\), \({u_6} = 0,00001\). Khi đó q và số hạng tổng quát là
Cho ba số x, 5, 3y theo thứ tự lập thành cấp số cộng và ba số x, 3, 3y theo thứ tự lập thành cấp số nhân thì |3y - x| bằng?
Cho ba số x; 5; 2y theo thứ tự lập thành cấp số cộng và ba số x; 4; 2y theo thứ tự lập thành cấp số nhân thì |x - 2y| bằng
Một du khách vào chuồng đua ngựa đặt cược, lần đầu tiên đặt 20000 đồng, mỗi lần sau tiền đặt gấp đôi tiền đặt lần trước. Người đó thua 9 lần liên tiếp và thắng ở lần thứ 10. Hỏi du khách đó thắng hay thua bao nhiêu?
Cho cấp số nhân (un) có số hạng đầu u1 = -3 và công bội \(q = \frac{2}{3}\). Số hạng thứ năm của (un) là
Cho cấp số nhân (un) biết u6 = 2 và u9 = 6. Tìm giá trị của u21.
Cho cấp số nhân (un) thỏa mãn \(\left\{ \begin{array}{l} {u_1} + {u_2} + {u_3} = 13\\ {u_4} - {u_1} = 26 \end{array} \right.\). Tổng 8 số hạng đầu của cấp số nhân (un) là
Cho cấp số nhân (un) có tổng n số hạng đầu tiên là \({S_n} = {5^n} - 1\) với n = 1, 2, ... . Tìm số hạng đầu u1 và công bội q của cấp số nhân đó?
Cho cấp số nhân (un), biết u1 = 12, \(\frac{{{u_3}}}{{{u_8}}} = 243\). Tìm u9.
Có bao nhiêu cấp số nhân có 5 số hạng? Biết rằng tổng 5 số hạng đó là 31 và tích của chúng là 1024.
Cho dãy số (xn) thoả mãn x1 = 40 và \({x_n} = 1,1.{x_{n - 1}}\) với mọi n = 2; 3; 4; ... Tính giá trị của \(S = {x_1} + {x_2} + ... + {x_{12}}\) (làm tròn đến chữ số thập phân thứ nhất).
Cho tam giác ABC cân tại A. Biết rằng độ dài cạnh BC, trung tuyến AM và độ dài cạnh AB theo thứ tự đó lập thành một cấp số nhân có công bội q. Tìm công bội q của cấp số nhân đó.
Tính tổng \(S = 1 + 2.2 + {3.2^2} + {4.2^3} + ........ + {2018.2^{2017}}\)
Cho bốn số a, b, c, d theo thứ tự đó tạo thành cấp số nhân với công bội khác 1. Biết tổng ba số hạng đầu bằng \(\frac{{148}}{9}\), đồng thời theo thứ tự đó chúng lần lượt là số hạng thứ nhất, thứ tư và thứ tám của một cấp số cộng. Tính giá trị biểu thức T = a - b + c - d.
Giả sử \(\frac{{\sin \alpha }}{6}\), \(\cos \alpha \), \(\tan \alpha \) theo thứ tự đó là một cấp số nhân. Tính \(\cos 2\alpha \).
Cho hình vuông (C1) có cạnh bằng a. Người ta chia mỗi cạnh của hình vuông thành bốn phần bằng nhau và nối các điểm chia một cách thích hợp để có hình vuông (C2) (Hình vẽ).
Từ hình vuông (C2) lại tiếp tục làm như trên ta nhận được dãy các hình vuông C1, C2, C3,.,Cn ... Gọi Si là diện tích của hình vuông \({C_i}\,\left( {i \in \left\{ {1,2,3,.....} \right\}} \right)\). Đặt \(T = {S_1} + {S_2} + {S_3} + ...{S_n} + ...\). Biết \(T = \frac{{32}}{3}\), tính a?
Cho dãy số (un) xác định bởi \({u_1} = - \frac{{41}}{{20}}\) và \({u_{n + 1}} = 21{u_n} + 1\) với mọi \(n \ge 1.\) Tìm số hạng thứ 2018 của dãy số đã cho.
Cho dãy số (an) xác định bởi \({a_1} = 2,{a_{n + 1}} = - 2{a_n},n \ge 1,n \in N,{a_{n + 1}} = - 2{a_n},n \ge 1,n \in N\). Tính tổng của 10 số hạng đầu tiên của dãy số.
Cho hình vuông \({A_1}{B_1}{C_1}{D_1}\) có cạnh bằng 1. Gọi Ak+1, Bk+1, Ck+1, Dk+1 thứ tự là trung điểm các cạnh AkBk, BkCk, CkDk, DkAk (với k = 1, 2, ... ). Chu vi của hình vuông \({A_{2018}}{B_{2018}}{C_{2018}}{D_{2018}}\) bằng
Cho hình vuông ABCD có cạnh bằng a và có diện tích \({S_1}\). Nối 4 trung điểm A1, B1, C1, D1 theo thứ tự của cạnh AB, BC, CD, DA ta được hình vuông thứ hai có diện tích S2. Tiếp tục làm như thế, ta được hình vuông thứ ba là \({A_2}{B_2}{C_2}{D_2}\) có diện tích S3, …và cứ tiếp tục làm như thế, ta tính được các hình vuông lần lượt có diện tích S4, S5,…, S100 (tham khảo hình bên). Tính tổng \(S = {S_1} + {S_2} + {S_3} + ... + {S_{100}}\).
Giá trị của tổng \(4 + 44 + 444 + ... + 44...4\) (tổng đó có 2018 số hạng) bằng
Cho dãy số (un) xác định bởi: \({u_1} = \frac{1}{3}\) và \({u_{n + 1}} = \frac{{n + 1}}{{3n}}.{u_n}\). Tổng \(S = {u_1} + \frac{{{u_2}}}{2} + \frac{{{u_3}}}{3} + ... + \frac{{{u_{10}}}}{{10}}\) bằng