THÔNG TIN CHI TIẾT ĐỀ THI
Logo thi24h.vn
ĐỀ THI Toán học
Số câu hỏi: 11
Thời gian làm bài: 19 phút
Mã đề: #1693
Lĩnh vực: Toán học
Nhóm: Toán 10 - Cung và góc lượng giác. Công thức lượng giác
Lệ phí: Miễn phí
Lượt thi: 1813

Ôn tập trắc nghiệm Cung và góc lượng giác Toán Lớp 10 Phần 4

Câu 1

Tập nghiệm của phương trình \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbbG8FasPYRqj0-yi0dXdbba9pGe9xq-JbbG8A8frFve9 % Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaciGGZbGaai % yAaiaac6gacaaIYaGaamiEaiabg2da9iGacohacaGGPbGaaiOBaiaa % dIhaaaa!3FC7! \sin 2x = \sin x\)

A.
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbbG8FasPYRqj0-yi0dXdbba9pGe9xq-JbbG8A8frFve9 % Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGtbGaey % ypa0ZaaiWaaeaacaWGRbGaaGOmaiaabc8acaGG7aWaaSaaaeaacaqG % apaabaGaaG4maaaacqGHRaWkcaWGRbGaaGOmaiaabc8adaabbaqaai % aadUgacqGHiiIZcqWIKeIOaiaawEa7aaGaay5Eaiaaw2haaaaa!4982! S = \left\{ {k2{\rm{\pi }};\frac{{\rm{\pi }}}{3} + k2{\rm{\pi }}\left| {k \in Z} \right.} \right\}\)
B.
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbbG8FasPYRqj0-yi0dXdbba9pGe9xq-JbbG8A8frFve9 % Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGtbGaey % ypa0ZaaiWaaeaacaWGRbGaaGOmaiaabc8acaGG7aWaaSaaaeaacaqG % apaabaGaaG4maaaacqGHRaWkdaWcaaqaaiaadUgacaaIYaGaaeiWda % qaaiaaiodaaaWaaqqaaeaacaWGRbGaeyicI4SaeSijHikacaGLhWoa % aiaawUhacaGL9baaaaa!4A4F! S = \left\{ {k2{\rm{\pi }};\frac{{\rm{\pi }}}{3} + \frac{{k2{\rm{\pi }}}}{3}\left| {k \in Z} \right.} \right\}\)
C.
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbbG8FasPYRqj0-yi0dXdbba9pGe9xq-JbbG8A8frFve9 % Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGtbGaey % ypa0ZaaiWaaeaacaWGRbGaaGOmaiaabc8acaGG7aGaeyOeI0YaaSaa % aeaacaqGapaabaGaaG4maaaacqGHRaWkcaWGRbGaaGOmaiaabc8ada % abbaqaaiaadUgacqGHiiIZcqWIKeIOaiaawEa7aaGaay5Eaiaaw2ha % aaaa!4A6F! S = \left\{ {k2{\rm{\pi }}; - \frac{{\rm{\pi }}}{3} + k2{\rm{\pi }}\left| {k \in Z} \right.} \right\}\)
D.
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbbG8FasPYRqj0-yi0dXdbba9pGe9xq-JbbG8A8frFve9 % Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGtbGaey % ypa0ZaaiWaaeaacaWGRbGaaGOmaiaabc8acaGG7aGaaeiWdiabgUca % RiaadUgacaaIYaGaaeiWdmaaeeaabaGaam4AaiabgIGiolablssiIc % Gaay5bSdaacaGL7bGaayzFaaaaaa!48B5! S = \left\{ {k2{\rm{\pi }};{\rm{\pi }} + k2{\rm{\pi }}\left| {k \in Z} \right.} \right\}\)
Câu 2

Nghiệm của pt \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qaciGGZbGaaiyAaiaac6gacaWG4bGaeyypa0Jaai4eGmaalaaabaGa % aGymaaqaaiaaikdaaaaaaa!3D2C! \sin x = -\frac{1}{2}\)là:

A.
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbqfgBHr % xAU9gimLMBVrxEWvgarmWu51MyVXgaruWqVvNCPvMCG4uz3bqefqvA % Tv2CG4uz3bIuV1wyUbqee0evGueE0jxyaibaieYlf9yrpgeu0dXdh9 % vqqj-hEeeu0xXdbba9frFj0-OqFfea0dXdd9vqai-hGuQ8kuc9pgc9 % q8qqaq-dir-f0-yqaiVgFr0xfr-xfr-xb9adbaqaaeGaciGaaiaabe % qaamaaeaqbaaGcbaGaamiEaiabg2da9maalaaabaGaeqiWdahabaGa % aG4maaaacqGHRaWkcaWGRbGaaGOmaiabec8aWbaa!465A! x = \frac{\pi }{3} + k2\pi \)
B.
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbqfgBHr % xAU9gimLMBVrxEWvgarmWu51MyVXgaruWqVvNCPvMCG4uz3bqefqvA % Tv2CG4uz3bIuV1wyUbqee0evGueE0jxyaibaieYlf9yrpgeu0dXdh9 % vqqj-hEeeu0xXdbba9frFj0-OqFfea0dXdd9vqai-hGuQ8kuc9pgc9 % q8qqaq-dir-f0-yqaiVgFr0xfr-xfr-xb9adbaqaaeGaciGaaiaabe % qaamaaeaqbaaGcbaGaamiEaiabg2da9maalaaabaGaeyOeI0IaeqiW % dahabaGaaGOnaaaacqGHRaWkcaWGRbGaaGOmaiabec8aWbaa!474A! x = \frac{{ - \pi }}{6} + k2\pi \)
C.
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbqfgBHr % xAU9gimLMBVrxEWvgarmWu51MyVXgaruWqVvNCPvMCG4uz3bqefqvA % Tv2CG4uz3bIuV1wyUbqee0evGueE0jxyaibaieYlf9yrpgeu0dXdh9 % vqqj-hEeeu0xXdbba9frFj0-OqFfea0dXdd9vqai-hGuQ8kuc9pgc9 % q8qqaq-dir-f0-yqaiVgFr0xfr-xfr-xb9adbaqaaeGaciGaaiaabe % qaamaaeaqbaaGcbaGaamiEaiabg2da9maalaaabaGaeqiWdahabaGa % aGOnaaaacqGHRaWkcaWGRbGaaGOmaiabec8aWbaa!465D! x = \frac{\pi }{6} + k2\pi \)
D.
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbqfgBHr % xAU9gimLMBVrxEWvgarmWu51MyVXgaruWqVvNCPvMCG4uz3bqefqvA % Tv2CG4uz3bIuV1wyUbqee0evGueE0jxyaibaieYlf9yrpgeu0dXdh9 % vqqj-hEeeu0xXdbba9frFj0-OqFfea0dXdd9vqai-hGuQ8kuc9pgc9 % q8qqaq-dir-f0-yqaiVgFr0xfr-xfr-xb9adbaqaaeGaciGaaiaabe % qaamaaeaqbaaGcbaGaamiEaiabg2da9maalaaabaGaaGynaiabec8a % WbqaaiaaiAdaaaGaey4kaSIaam4AaiaaikdacqaHapaCaaa!471C! x = \frac{{5\pi }}{6} + k2\pi \)
Câu 3

Nghiệm của phương trình \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qaciGGJbGaai4BaiaacshacaWG4bGaey4kaSYaaOaaaeaacaaIZaaa % leqaaOGaaiiOaiabg2da9iaabccacaaIWaaaaa!3F2F! \cot x + \sqrt 3 \; = {\rm{ }}0\)là:

A.
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 % da9maalaaabaGaeqiWdahabaGaaG4maaaacqGHRaWkcaWGRbGaaGOm % aiabec8aWbaa!3ECC! x = \frac{\pi }{3} + k2\pi \)
B.
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 % da9maalaaabaGaeqiWdahabaGaaGOnaaaacqGHRaWkcaWGRbGaeqiW % dahaaa!3E13! x = \frac{\pi }{6} + k\pi \)
C.
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 % da9iabgkHiTmaalaaabaGaeqiWdahabaGaaGOnaaaacqGHRaWkcaWG % RbGaeqiWdahaaa!3F00! x = - \frac{\pi }{6} + k\pi \)
D.
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 % da9iabgkHiTmaalaaabaGaeqiWdahabaGaaG4maaaacqGHRaWkcaWG % RbGaeqiWdahaaa!3EFD! x = - \frac{\pi }{3} + k\pi \)
Câu 4

Nghiệm của phương trình \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaaca % aIZaaaleqaaOGaey4kaSIaaG4maiGacshacaGGHbGaaiOBaiaadIha % cqGH9aqpcaaIWaaaaa!3E03! \sqrt 3 + 3\tan x = 0\) là:

A.
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 % da9maalaaabaGaeqiWdahabaGaaG4maaaacqGHRaWkcaWGRbGaeqiW % dahaaa!3E10! x= \frac{\pi }{3} + k\pi \)
B.
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 % da9maalaaabaGaeqiWdahabaGaaGOmaaaacqGHRaWkcaWGRbGaaGOm % aiabec8aWbaa!3ECB! x= \frac{\pi }{2} + k2\pi \)
C.
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 % da9iabgkHiTmaalaaabaGaeqiWdahabaGaaGOnaaaacqGHRaWkcaWG % RbGaeqiWdahaaa!3F00! x= - \frac{\pi }{6} + k\pi \)
D.
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 % da9maalaaabaGaeqiWdahabaGaaGOmaaaacqGHRaWkcaWGRbGaeqiW % dahaaa!3E0F! x = \frac{\pi }{2} + k\pi \)
Câu 5

Nghiệm của phương trình \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+ % gacaGGZbGaamiEaiabg2da9iabgkHiTmaalaaabaGaaGymaaqaaiaa % ikdaaaaaaa!3D3D! \cos x = - \frac{1}{2}\)là:

A.
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 % da9iabgglaXoaalaaabaGaeqiWdahabaGaaG4maaaacqGHRaWkcaWG % RbGaaGOmaiabec8aWbaa!40B9! x = \pm \frac{\pi }{3} + k2\pi \)
B.
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 % da9iabgglaXoaalaaabaGaeqiWdahabaGaaGOnaaaacqGHRaWkcaWG % RbGaaGOmaiabec8aWbaa!40BC! x = \pm \frac{\pi }{6} + k2\pi \)
C.
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqaMjdvLHfij5gC1rhimfMBNvxyNvga7HxpCbxBGW % LzYf2y7jdxWLgi9T3m9TYAYWfCPbsFamXvP5wqSXMqHnxAJn0BKvgu % HDwzZbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALj % hiov2DaebbnrfifHhDYfgasaacH8YjY-vipgYlh9vqqj-hEeeu0xXd % bba9frFj0-OqFfea0dXdd9vqai-hGuQ8kuc9pgc9q8qqaq-dir-f0- % yqaiVgFr0xfr-xfr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGc % baaeaaaaaaaaa8qacaWG4bGaeyypa0JaeyySae7aaSaaa8aabaWdbi % aaikdacqaHapaCa8aabaWdbiaaiodaaaGaey4kaSIaam4Aaiaaikda % cqaHapaCaaa!53AB! x = \pm \frac{{2\pi }}{3} + k2\pi \)
D.
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 % da9iabgglaXoaalaaabaGaeqiWdahabaGaaGOnaaaacqGHRaWkcaWG % RbGaeqiWdahaaa!4000! x = \pm \frac{\pi }{6} + k\pi \)
Câu 6

Nghiệm của phương trình \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+ % gacaGGZbGaamiEaiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaaa % aa!3C50! \cos x = \frac{1}{2}\)là:

A.
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 % da9iabgglaXoaalaaabaGaeqiWdahabaGaaG4maaaacqGHRaWkcaWG % RbGaaGOmaiabec8aWbaa!40B9! x = \pm \frac{\pi }{3} + k2\pi \)
B.
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 % da9iabgglaXoaalaaabaGaeqiWdahabaGaaGOnaaaacqGHRaWkcaWG % RbGaaGOmaiabec8aWbaa!40BC! x = \pm \frac{\pi }{6} + k2\pi \)
C.
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 % da9iabgglaXoaalaaabaGaeqiWdahabaGaaGinaaaacqGHRaWkcaWG % RbGaaGOmaiabec8aWbaa!40BA! x = \pm \frac{\pi }{4} + k2\pi \)
D.
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 % da9iabgglaXoaalaaabaGaeqiWdahabaGaaGOmaaaacqGHRaWkcaWG % RbGaaGOmaiabec8aWbaa!40B8! x = \pm \frac{\pi }{2} + k2\pi \)
Câu 7

Nghiệm của phương trình cosx = -1 là

A.
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqaMjcvLHfij5gC1rhimfMBNvxyNvga7HxpCbxAGS % YACbxAG0hatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2D % Gi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHb % GeaGqiVCI8FfYJH8YrFfeuY-Hhbbf9v8qqaqFr0xc9pk0xbba9q8Wq % FfeaY-biLkVcLq-JHqpepeea0-as0Fb9pgeaYRXxe9vr0-vr0-vqpW % qaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeGaamiE % aiabg2da9iabec8aWjabgUcaRiaadUgacqaHapaCaaa!4952! x = \pi + k\pi \)
B.
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqaM5cvLHfij5gC1rhimfMBNvxyNvga7HxpTWLzYf % 2y7XfCPbsF7jtFRSMmCbxAG0hatCvAUfeBSjuyZL2yd9gzLbvyNv2C % aerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLD % harqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY-Hhbbf9v8qqaqFr % 0xc9pk0xbba9q8WqFfeaY-biLkVcLq-JHqpepeea0-as0Fb9pgeaYR % Xxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaaba % aaaaaaaapeGaamiEaiabg2da9iabgkHiTmaalaaapaqaa8qacqaHap % aCa8aabaWdbiaaikdaaaGaey4kaSIaam4AaiaaikdacqaHapaCaaa!508A! x = - \frac{\pi }{2} + k2\pi \)
C.
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqaMncvLHfij5gC1rhimfMBNvxyNvga7HxpCbxAGS % YAYWfCPbsFamXvP5wqSXMqHnxAJn0BKvguHDwzZbqefqvATv2CG4uz % 3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYf % gasaacH8YjY-vipgYlh9vqqj-hEeeu0xXdbba9frFj0-OqFfea0dXd % d9vqai-hGuQ8kuc9pgc9q8qqaq-dir-f0-yqaiVgFr0xfr-xfr-xb9 % adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWG % 4bGaeyypa0JaeqiWdaNaey4kaSIaam4AaiaaikdacqaHapaCaaa!4A41! x = \pi + k2\pi \)
D.
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqaM1cvLHfij5gC1rhimfMBNvxyNvga7HxpCzMCHn % 2EZWfCPbsF7jtFRSgxWLgi9bWexLMBbXgBcf2CPn2qVrwzqf2zLnha % ruavP1wzZbItLDhis9wBH5garmWu51MyVXgaruWqVvNCPvMCG4uz3b % qee0evGueE0jxyaibaieYlNi-xH8yiVC0xbbL8F4rqqrFfpeea0xe9 % Lq-Jc9vqaqpepm0xbbG8FasPYRqj0-yi0dXdbba9pGe9xq-JbbG8A8 % frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaa % aaaaaaWdbiaadIhacqGH9aqpdaWcaaWdaeaapeGaaG4maiabec8aWb % WdaeaapeGaaGOmaaaacqGHRaWkcaWGRbGaeqiWdahaaa!4F71! x = \frac{{3\pi }}{2} + k\pi \)
Câu 8

Nghiệm của phương trình cosx = 1 là:

A.
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 % da9iaadUgacqaHapaCaaa!3AA3! x= k\pi \)
B.
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 % da9maalaaabaGaeqiWdahabaGaaGOmaaaacqGHRaWkcaWGRbGaaGOm % aiabec8aWbaa!3ECA! x= \frac{\pi }{2} + k2\pi \)
C.
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 % da9iaadUgacaaIYaGaeqiWdahaaa!3B5F! x = k2\pi \)
D.
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 % da9maalaaabaGaeqiWdahabaGaaGOmaaaacqGHRaWkcaWGRbGaeqiW % dahaaa!3E0E! x = \frac{\pi }{2} + k\pi \)
Câu 9

Nghiệm của phương trình \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacM % gacaGGUbGaamiEaiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaaa % aa!3C55! \sin x = \frac{1}{2}\)

A.
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 % da9maalaaabaGaeqiWdahabaGaaG4maaaacqGHRaWkcaWGRbGaaGOm % aiabec8aWbaa!3ECB! x= \frac{\pi }{3} + k2\pi \)
B.
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 % da9maalaaabaGaeqiWdahabaGaaGOnaaaacqGHRaWkcaWGRbGaeqiW % dahaaa!3E12! x= \frac{\pi }{6} + k\pi \)
C.
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 % da9iaadUgacqaHapaCaaa!3AA3! x = k\pi \)
D.
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 % da9maalaaabaGaeqiWdahabaGaaGOnaaaacqGHRaWkcaWGRbGaaGOm % aiabec8aWbaa!3ECE! x = \frac{\pi }{6} + k2\pi \)
Câu 10

Nghiệm của phương trình \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacM % gacaGGUbGaamiEaiabg2da9iabgkHiTiaaigdaaaa!3C76! \sin x = - 1\)

A.
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 % da9iabgkHiTmaalaaabaGaeqiWdahabaGaaGOmaaaacqGHRaWkcaWG % RbGaeqiWdahaaa!3EFB! x = - \frac{\pi }{2} + k\pi \)
B.
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 % da9iabgkHiTmaalaaabaGaeqiWdahabaGaaGOmaaaacqGHRaWkcaWG % RbGaaGOmaiabec8aWbaa!3FB7! x = - \frac{\pi }{2} + k2\pi \)
C.
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 % da9iaadUgacqaHapaCaaa!3AA3! x= k\pi \)
D.
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 % da9maalaaabaGaaG4maiabec8aWbqaaiaaikdaaaGaey4kaSIaam4A % aiabec8aWnaalaaabaGaeyOeI0IaamOyaiabgglaXoaakaaabaGaam % OyamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaaisdacaWGHbGaam4y % aaWcbeaaaOqaaiaaikdacaWGHbaaaaaa!49B7! x = \frac{{3\pi }}{2} + k\pi\)
Câu 11

Nghiệm của phương trình sinx = 1 là:

A.
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 % da9iabgkHiTmaalaaabaGaeqiWdahabaGaaGOmaaaacqGHRaWkcaWG % RbGaaGOmaiabec8aWbaa!3FB7! x = - \frac{\pi }{2} + k2\pi \)
B.
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 % da9maalaaabaGaeqiWdahabaGaaGOmaaaacqGHRaWkcaWGRbGaeqiW % dahaaa!3E0E! x= \frac{\pi }{2} + k\pi \)
C.
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 % da9iaadUgacqaHapaCaaa!3AA3! x = k\pi \)
D.
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 % da9maalaaabaGaeqiWdahabaGaaGOmaaaacqGHRaWkcaWGRbGaaGOm % aiabec8aWbaa!3ECA! x= \frac{\pi }{2} + k2\pi \)