THÔNG TIN CHI TIẾT ĐỀ THI
ĐỀ THI Toán học
Số câu hỏi: 50
Thời gian làm bài: 90 phút
Mã đề: #6044
Lĩnh vực: Toán học
Nhóm: THI THPTQG
Lệ phí:
Miễn phí
Lượt thi: 3803
Đề thi thử THPT QG năm 2021 môn Toán
Câu 1
Cho hàm số \(y={{x}^{3}}-6{{x}^{2}}+7x+5\) có đồ thị là \(\left( C \right)\). Phương trình tiếp tuyến của \(\left( C \right)\) tại điểm có hoành độ bằng 2 là:
A.
\(y=5x+13\).
B.
\(y=-5x-13\).
C.
\(y=-5x+13\).
D.
\(y=5x-13\).
Câu 2
Giá trị của giới hạn \(\underset{x\to -1}{\mathop{\lim }}\,\frac{{{x}^{3}}+2{{x}^{2}}+1}{{{x}^{2}}+1}\) là
A.
\(-2\).
B.
Không tồn tại.
C.
\(1\).
D.
\(2\).
Câu 3
Cho hàm số \(y=f(x)\) liên tục trên \(\mathbb{R}\) và có bảng biến thiên
A.
\(m=-1\).
B.
\(m=-2\).
C.
\(m=4\).
D.
\(m=2\).
Câu 4
Tìm số mặt của hình đa diện ở hình vẽ bên:
A.
9
B.
11
C.
10
D.
12
Câu 5
Có bao nhiêu số tự nhiên gồm 4 chữ số đôi một khác nhau?
A.
\(C_{10}^{4}\).
B.
\(9.A_{9}^{3}\).
C.
\(A_{10}^{4}\).
D.
\(9.C_{9}^{3}\).
Câu 6
Cho hàm số\(y=\frac{ax+b}{cx+d}\)có đồ thị như hình vẽ dưới đây. Khẳng định nào sau đây đúng?
A.
\(ab>0\).
B.
\(ac>0\).
C.
\(ad>bc\).
D.
\(cd>0\).
Câu 7
Số giao điểm của đồ thị hàm số \(y={{x}^{3}}-3{{x}^{2}}-9x-2\) với trục hoành là:
A.
2
B.
1
C.
3
D.
0
Câu 8
Cho tứ diện \(OABC\) có \(OA\), \(OB\), \(OC\) đôi một vuông góc nhau và \(OA=OB\)\(=OC=3a\). Tính khoảng cách giữa hai đường thẳng \(AC\) và \(OB\).
A.
\(\frac{3a\sqrt{2}}{2}\).
B.
\(\frac{3a}{4}\).
C.
\(\frac{a\sqrt{2}}{2}\).
D.
\(\frac{3a}{2}\).
Câu 9
Cho hàm số \(y=f(x)\) có bảng biến thiên như sau
A.
\(\left( -2;+\infty \right)\).
B.
\(\left( -\infty ;-1 \right)\).
C.
\(\left( -\infty ;2 \right)\).
D.
\(\left( -1;1 \right)\).
Câu 10
Hàm số nào sau đây không có cực trị?
A.
\(y={{x}^{3}}+3x+1\).
B.
\(y={{x}^{2}}-2x\).
C.
\(y={{x}^{3}}-3x-1\).
D.
\(y={{x}^{4}}+4{{x}^{2}}+1\).
Câu 11
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình vẽ sau
A.
\(y={{x}^{4}}-3{{x}^{2}}\).
B.
\(y={{x}^{3}}-3{{x}^{2}}\).
C.
\(y=-{{x}^{4}}+3{{x}^{2}}\).
D.
\(y=-{{x}^{3}}+3{{x}^{2}}\).
Câu 12
Số đường tiệm cận của đồ thị hàm số \(y=\frac{3}{x-2}\) bằng
A.
0
B.
1
C.
3
D.
2
Câu 13
Một hình chóp có đáy là tam giác đều cạnh bằng \(2\) và có chiều cao bằng \(4.\) Tính thể tích khối chóp đó.
A.
\(\frac{4\sqrt{3}}{3}\).
B.
2
C.
4
D.
\(2\sqrt{3}\).
Câu 14
Cho hàm số \(y=f(x)\) có đồ thị hàm \(f'(x)\) như hình vẽ
A.
4
B.
1
C.
2
D.
3
Câu 15
Giá trị lớn nhất của hàm số \(f(x)=2{{x}^{4}}-3{{x}^{2}}+1\) trên đoạn \(\left[ 0;3 \right]\) bằng:
A.
0
B.
2
C.
1
D.
136
Câu 16
Số cách chia 15 học sinh thành 3 nhóm A, B, C lần lượt gồm 4, 5, 6 học sinh là:
A.
\(C_{15}^{4}+C_{15}^{5}+C_{15}^{6}\).
B.
\(C_{15}^{4}.C_{11}^{5}.C_{6}^{6}\).
C.
\(A_{15}^{4}.A_{11}^{5}.A_{6}^{6}\).
D.
\(C_{15}^{4}+C_{11}^{5}+C_{6}^{6}\).
Câu 17
Cho hàm số \(y=f(x)\) có bảng biến thiên như sau
A.
\(x=3\).
B.
\(x=2\).
C.
\(x=-2\).
D.
\(x=-3\).
Câu 18
Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a\), \(SA\bot \left( ABCD \right)\), \(SB=a\sqrt{3}\). Tính thể tích \(V\) của khối chóp \(S.ABCD\) theo \(a\).
A.
\(V=\frac{{{a}^{3}}\sqrt{2}}{6}\).
B.
\(V={{a}^{3}}\sqrt{2}\).
C.
\(V=\frac{{{a}^{3}}\sqrt{2}}{3}\).
D.
\(V=\frac{{{a}^{3}}\sqrt{3}}{3}\).
Câu 19
Cho hàm số \(y=f\left( x \right)\) có đạo hàm \(f'\left( x \right)=2x-\frac{2}{{{x}^{2}}},\,\forall x\ne 0\) . Giá trị nhỏ nhất của hàm số trên \(\left( 0;+\infty \right)\) là
A.
\(f\left( 1 \right)\).
B.
\(f\left( 3 \right)\).
C.
\(f\left( 0 \right)\).
D.
\(f\left( -2 \right)\).
Câu 20
Cho hình chóp \(S.\,ABCD\) có đáy là hình vuông cạnh \(a\), mặt bên \(SAB\) là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Thể tích khối chóp \(S.\,ABCD\) là
A.
\(\frac{{{a}^{3}}\sqrt{3}}{2}\).
B.
\({{a}^{3}}\).
C.
\(\frac{{{a}^{3}}\sqrt{3}}{6}\).
D.
\(\frac{{{a}^{3}}\sqrt{3}}{3}\).
Câu 21
Cho hàm số \(f(x)=-\frac{1}{3}{{x}^{3}}+m{{x}^{2}}+\left( 3m+2 \right)x-5\) . Tập hợp các giá trị của tham số \(m\) để hàm số nghịch biến trên \(\mathbb{R}\) là \(\left[ a;\,b \right]\). Khi đó \(2a-b\) bằng
A.
6
B.
\(-3\).
C.
5
D.
\(-1\).
Câu 22
Tính tổng tất cả các nghiệm của phương trình sau \({{3}^{2x+8}}-{{4.3}^{x+5}}+27=0\).
A.
\(-\frac{4}{27}\).
B.
\(\frac{4}{27}\).
C.
\(5\).
D.
\(-5\).
Câu 23
Hàm số \(y=\left| {{\left( x-1 \right)}^{3}}\left( x+1 \right) \right|\) có bao nhiêu điểm cực trị?
A.
2
B.
4
C.
3
D.
1
Câu 24
Cho hình chóp \(S.ABC\)có \(SA\) vuông góc với mặt phẳng \(\left( ABC \right),SA=a,AB=a\),\(AC=2a,\) \(\widehat{BAC}={{60}^{0}}.\) Tính diện tích hình cầu ngoại tiếp hình chóp \(S.ABC\).
A.
\(20\pi {{a}^{2}}\).
B.
\(\frac{5}{3}.\pi {{a}^{2}}\).
C.
\(5\pi {{a}^{2}}\).
D.
\(\frac{20}{3}\pi {{a}^{2}}\).
Câu 25
Đặt \({{\log }_{2}}5=a\), \({{\log }_{3}}2=b\). Tính \({{\log }_{15}}20\) theo \(a\) và \(b\) ta được
A.
\({{\log }_{15}}20=\frac{2b+1}{1+ab}\).
B.
\({{\log }_{15}}20=\frac{2b+a}{1+ab}\).
C.
\({{\log }_{15}}20=\frac{b+ab+1}{1+ab}\).
D.
\({{\log }_{15}}20=\frac{2b+ab}{1+ab}\).
Câu 26
Cho hình chóp \(S.ABC\) có \(\Delta ABC\) vuông tại \(B\), \(BA=a\), \(BC=a\sqrt{3}\). Cạnh bên \(SA\) vuông góc với đáy và \(SA=a\). Tính bán kính của mặt cầu ngoại tiếp hình chóp \(S.ABC\).
A.
\(R=\frac{a\sqrt{5}}{2}\).
B.
\(R=\frac{a\sqrt{5}}{4}\).
C.
\(R=a\sqrt{5}\).
D.
\(R=2a\sqrt{5}\).
Câu 27
Cho hình chóp tứ giác đều \(S.ABCD\) có cạnh đáy bằng \(a\), cạnh bên bằng \(\frac{a\sqrt{5}}{2}\). Số đo góc giữa hai mặt phẳng \(\left( SAB \right)\) và \(\left( ABCD \right)\) là:
A.
\({{30}^{0}}\).
B.
\({{90}^{0}}\).
C.
\({{45}^{0}}\).
D.
\({{60}^{0}}\).
Câu 28
Tính thể tích \(V\) của khối lăng trụ tứ giác đều \(ABCD.{A}'{B}'{C}'{D}'\) biết độ dài cạnh đáy của lăng trụ bằng \(2\) đồng thời góc tạo bởi \({A}'C\) và đáy \(\left( ABCD \right)\) bằng \(30{}^\circ \).
A.
\(V=\frac{8\sqrt{6}}{9}\).
B.
\(V=8\sqrt{6}\).
C.
\(V=24\sqrt{6}\).
D.
\(V=\frac{8\sqrt{6}}{3}\).
Câu 29
Cho hình chóp \(S.ABCD\), đáy là hình chữ nhật tâm \(O\), \(AB=a\), \(AD=a\sqrt{3}\), \(SA=3a\), \(SO\) vuông góc với mặt đáy \(\left( ABCD \right)\). Thể tích khối chóp \(S.ABC\) bằng
A.
\({{a}^{3}}\sqrt{6}\).
B.
\(2{{a}^{3}}\sqrt{6}\).
C.
\(\frac{{{a}^{3}}\sqrt{6}}{3}\).
D.
\(\frac{2{{a}^{3}}\sqrt{6}}{3}\).
Câu 30
Hình vẽ bên dưới là đồ thị của hàm số nào?
A.
\(y=-\frac{1}{{{3}^{x}}}\).
B.
\(y=\frac{1}{{{3}^{x}}}\).
C.
\(y=-{{3}^{x}}\).
D.
\(y={{3}^{x}}\).
Câu 31
Cho \(a>1\). Mệnh đề nào sau đây là đúng?
A.
\(\frac{\sqrt[3]{{{a}^{2}}}}{a}>1\).
B.
\({{a}^{\frac{1}{3}}}>\sqrt{a}\).
C.
\({{a}^{-\sqrt{3}}}>\frac{1}{{{a}^{\sqrt{5}}}}\).
D.
\(\frac{1}{{{a}^{2016}}}<\frac{1}{{{a}^{2017}}}\).
Câu 32
Tỷ lệ tăng dân số hàng năm của Việt Nam là 1,07%. Năm 2016, dân số của Việt Nam là 93.422.000 người. Hỏi với tỷ lệ tăng dân số như vậy thì năm 2026 dân số Việt Nam gần với kết quả nào nhất?
A.
122 triệu người
B.
115 triệu người
C.
118 triệu người
D.
120 triệu người
Câu 33
Cho hình lập phương \(ABCD.{A}'{B}'{C}'{D}'\), góc giữa \(A'D\) và \(CD'\) bằng:
A.
\({{30}^{0}}\).
B.
\({{60}^{0}}\).
C.
\({{45}^{0}}\).
D.
\({{90}^{0}}\).
Câu 34
Cho hình lăng trụ đứng \(ABC.{A}'{B}'{C}'\) có đáy là tam giác vuông cân tại \(A\), \(AB=AC=a\), \(A{A}'=\sqrt{2}a\). Thể tích khối cầu ngoại tiếp hình tứ diện \(A{B}'{A}'C\) là
A.
\(\frac{\pi {{a}^{3}}}{3}\).
B.
\(4\pi {{a}^{3}}\).
C.
\(\pi {{a}^{3}}\).
D.
\(\frac{4\pi {{a}^{3}}}{3}\).
Câu 35
Cho hình chóp \(S.ABCD\) có \(SA\bot \left( ABCD \right)\), đáy \(ABCD\) là hình chữ nhật với\(AC=a\sqrt{3}\)và \(BC=a\). Tính khoảng cách giữa \(SD\) và \(BC\).
A.
\(a\sqrt{2}\).
B.
\(\frac{a}{2}\).
C.
\(\frac{a\sqrt{2}}{2}\).
D.
\(2a\sqrt{2}\).
Câu 36
Cho hàm số \(y=\frac{x+m}{x-1}\) có đồ thị là đường cong \(\left( H \right)\) và đường thẳng \(\Delta \) có phương trình \(y=x+1\). Số giá trị nguyên của tham số \(m\) nhỏ hơn 10 để đường thẳng \(\Delta \) cắt đường cong \(\left( H \right)\) tại hai điểm phân biệt nằm về hai nhánh của đồ thị.
A.
26
B.
10
C.
24
D.
12
Câu 37
Số giá trị nguyên của tham số \(m\) để hàm số \(y=m{{x}^{4}}-\left( m-3 \right){{x}^{2}}+{{m}^{2}}\) không có điểm cực đại là
A.
4
B.
2
C.
5
D.
0
Câu 38
Cho hình lăng trụ đứng \(ABC.{A}'{B}'{C}'\) có đáy \(ABC\) là tam giác vuông tại \(A\). Biết \(AB=A{A}'=a\), \(AC=2a\). Gọi \(M\) là trung điểm của \(AC\). Diện tích mặt cầu ngoại tiếp tứ diện \(M{A}'{B}'{C}'\) bằng
A.
\(5\pi {{a}^{2}}\).
B.
\(3\pi {{a}^{2}}\).
C.
\(4\pi {{a}^{2}}\).
D.
\(2\pi {{a}^{2}}\).
Câu 39
Tìm \(m\) để tiếp tuyến của đồ thị hàm số \(\left( C \right):y=\left( 2m-1 \right){{x}^{4}}-m{{x}^{2}}+8\) tại điểm có hoành độ \(x=1\) vuông góc với đường thẳng \(\left( d \right):2x-y-3=0\).
A.
\(m=\frac{9}{2}\).
B.
\(m=-\frac{1}{2}\).
C.
\(m=\frac{7}{12}\).
D.
\(m=2\).
Câu 40
Cho hình lăng trụ đứng \(ABC.{A}'{B}'{C}'\) có đáy \(ABC\) là tam giác vuông tại \(A\), gọi \(M\) là trung điểm của cạnh \(AA'\), biết rằng \(AB=2a;\)\(BC=a\sqrt{7}\) và \(\text{AA}'=6a\). Khoảng cách giữa \(\text{A }\!\!'\!\!\text{ B}\) và \(CM\) là:
A.
\(\frac{a\sqrt{13}}{13}\).
B.
\(\frac{a\sqrt{13}}{3}\).
C.
\(a\sqrt{13}\).
D.
\(\frac{3a}{\sqrt{13}}\).
Câu 41
Cho tứ diện \(ABCD\) có \(AC=AD=BC=BD=1\), mặt phẳng\(\left( ABC \right)\bot (ABD)\) và \(\left( ACD \right)\bot (BCD)\). Khoảng cách từ \(A\) đến mặt phẳng \(\left( BCD \right)\) là:
A.
\(2\sqrt{6}\).
B.
\(\frac{6}{\sqrt{3}}\).
C.
\(\frac{\sqrt{6}}{2}\).
D.
\(\frac{\sqrt{6}}{3}\).
Câu 42
Cho hàm đa thức \(y=f(x)\). Hàm số \(y=f'(x)\) có đồ thị như hình vẽ sau
A.
7
B.
5
C.
3
D.
6
Câu 43
Cho hàm số \(y=f\left( x \right)\) xác định và liên tục trên \(\mathbb{R}\) , có bảng biến thiên như sau. Hỏi đồ thị hàm số \(y=\frac{1}{f\left( x \right)+2}\) có tất cả bao nhiêu đường tiệm cận?
A.
5
B.
4
C.
3
D.
2
Câu 44
Cho hàm số \(f(x)\) liên tục trên \(\left[ 2;4 \right]\) và có bảng biến thiên như hình vẽ bên
A.
3
B.
6
C.
5
D.
4
Câu 45
Cho hàm số \(y=\left( x+1 \right)\left( 2x+1 \right)\left( 3x+1 \right)\left( m+\left| 2x \right| \right)\) và \(y=-12{{x}^{4}}-22{{x}^{3}}-{{x}^{2}}+10x+3\) có đồ thị lần lượt là \(\left( {{C}_{1}} \right)\) và \(\left( {{C}_{2}} \right)\) . có bao nhiêu giá trị nguyên của tham số \(m\) trên đoạn \(\left[ -2020;2020 \right]\) để \(\left( {{C}_{1}} \right)\) cắt \(\left( {{C}_{2}} \right)\) tại \(3\) điểm phân biệt.
A.
2020
B.
4040
C.
2021
D.
4041
Câu 46
Cho hình chóp \(S.ABC\) có \(SA=x\), \(BC=y\), \(AB=AC=SB=SC=1\). Thể tích khối chóp \(S.ABC\) lớn nhất khi tổng \(\left( x+y \right)\) bằng
A.
\(4\sqrt{3}\).
B.
\(\frac{2}{\sqrt{3}}\).
C.
\(\sqrt{3}\).
D.
\(\frac{4}{\sqrt{3}}\).
Câu 47
Một hộp đựng 3 viên bi màu xanh, 5 viên bi màu đỏ, 6 viên bi màu trắng và 7 viên bi màu đen. Chọn ngẫu nhiên đồng thời từ hộp 4 viên bi, tính xác suất để 4 viên bi được chọn không nhiều hơn 3 màu và luôn có bi màu xanh?
A.
\(\frac{2295}{5985}\).
B.
\(\frac{2259}{5985}\).
C.
\(\frac{2085}{5985}\).
D.
\(\frac{2058}{5985}\).
Câu 48
Cho \(4\) số \(a,\,b,\,c,\,d\) thỏa mãn điều kiện \({{a}^{2}}+{{b}^{2}}=4a+6b-9\) và \(3c+4d=1\). Tìm giá trị nhỏ nhất của biểu thức \(P={{\left( a-c \right)}^{2}}+{{\left( b-d \right)}^{2}}\) ?
A.
\(\frac{8}{5}\).
B.
\(\frac{64}{25}\).
C.
\(\frac{7}{5}\).
D.
\(\frac{49}{25}\).
Câu 49
Cho \(x,y\) là các số thực thỏa mãn \({{\log }_{9}}x={{\log }_{12}}y={{\log }_{16}}\left( x+2y \right)\). Giá trị tỉ số \(\frac{x}{y}\) là
A.
\(\frac{2-\sqrt{2}}{2}\).
B.
\(\frac{2+\sqrt{2}}{2}\).
C.
\(\sqrt{2}+1\).
D.
\(\sqrt{2}-1\).
Câu 50
Cho hình chóp \(S.ABCD\) có đáy là hình vuông, cạnh bên \(SA\) vuông góc với đáy. Gọi \(M\), \(N\) là trung điểm của \(SA\), \(SB\). Mặt phẳng \(MNCD\) chia hình chóp đã cho thành hai phần. tỉ số thể tích hai phần \(S.MNCD\) và \(MNABCD\) là
A.
1
B.
\(\frac{4}{5}\).
C.
\(\frac{3}{4}\).
D.
\(\frac{3}{5}\).